
Math Modeling, Week 11 
Categorization	models	
Adaptive	network	(Rescorla-Wagner)	
	 Restricted	to	linear	predictions	

Configural	units:	interaction	terms	among	cues;	enables	nonlinearity	
Prototype	
	 Based	on	mean	stimulus	for	each	category	
	 𝑃" = $

%&
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	 Prediction	based	on	nearest	prototype:	argmin) 𝐱 − 𝑃) 1	
	 Also	restricted	to	linear	predictions	
Exemplar	models	
	 Use	similarity,	not	features:	sim 𝑥, 𝑥5 	

	 	 Similarity	often	derived	from	some	dimensional	representation,	e.g.	sim 𝑥, 𝑥5 = 𝑒7 89 :97:9
; <

9 	
	 Prediction	based	on	summed	similarity:	𝑉) 𝑥 = sim 𝑥, 𝑥5:;∈) 		
	 Can	learn	any	category	structure	
	 	 Nonparametric	density	estimation	
	 	 Example:	5/4	structure	
	 Learnable	weights:	𝑉) 𝑥 = β?)sim 𝑥, 𝑥?? 	
	 	 Context	model	(Medin	&	Schaffer,	1978;	Nosofsky,	1986),	static	weights:	β?) = 𝐼 :A∈) 	
	 	 ALCOVE	(Kruschke,	1992)	updates	weights	for	all	exemplars:	𝛥β?) = 𝜀𝛿)sim 𝑥, 𝑥? 	

Pearce	(1987,	1994)	updates	weight	only	for	current	stimulus	(𝑥E):	𝛥βE) = 𝜀𝛿) 			
	 Applies	in	other	tasks,	e.g.	RL:		
	 	 𝑄 𝑎, 𝑠 = βI;,J;sim 𝑠, 𝑠5 sim 𝑎, 𝑎5I;,J; 	
	
Prototypes,	Rescorla-Wagner,	and	linear	regression	
RW	approximates	linear	regression	
	 Sequential	effects,	recency	bias	
	 Converges	to	OLS	solution	as	𝜀 → 0,	𝑛 → ∞	
	 Gradient	descent	on	E 𝐱𝐰 − 𝑦 1 			
Prototype	solution	
	 𝐱 − 𝑃S 1 < 𝐱 − 𝑃U 1 ⇔ 𝐱, 𝑃S − 𝑃U > XYZX[

1
, 𝑃S − 𝑃U 	 ( ⋅,⋅ 	denotes	inner	product)	

OLS	solution	
	 𝑦 = 𝐱 X^X 7_X^𝑌	
	 Factorize	𝑛 X^X 7_ = UU^	by	positive-definiteness	
	 Yields	orthonormal	representation	Z = XU:		
	 	 $
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% 𝑃U
d 	(coding	𝑌	as	±1)	

→	Prototype	model	≃	OLS	regression,	ignoring	cue	co/variance	and	category	sizes	
Could	account	for	category	size	by	 𝐱, %Y% 𝑃S −

%[
% 𝑃U > %Y
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Feature-similarity	equivalence	
Feature	model	predictions	depend	only	on	inner	products	between	past	and	present	stimuli	
Rescorla-Wagner	
	 After	𝑚	trials,	𝐰 = 𝜀𝛿j𝐱jk

jl_ 	
	 Prediction	for	new	stimulus	𝐱	is	 𝐱,𝐰 = 𝜀𝛿j 𝐱, 𝐱jk

jl_ 	
	 	



Prototype	
	 Prediction	depends	on	 𝐱, 𝑃S − 𝑃U = $

%Y
𝐱, 𝐱j𝐱m∈S − $

%[
𝐱, 𝐱j𝐱m∈U 	

	 or	if	accounting	for	category	size:	$% 𝑦jj 𝐱, 𝐱j 	
Define	sim 𝑥, 𝑥5 = 𝐱, 𝐱5 	
	 Feature	model	predictions	expressible	as	 βjsim 𝑥, 𝑥jk

jl_ 	
	 RW	corresponds	exactly	to	Pearce	update	rule:	𝛥β:m = 𝜀𝛿j	
	 Prototype	model	essentially	matches	context	model:	$% nY : 7n[ : 	
	
Similarity-feature	equivalence	
Any	well-behaved	similarity	function	can	be	written	as	an	inner	product	
	 Positive-definite:	given	 𝑥_, … , 𝑥p ,	matrix	 sim 𝑥?, 𝑥E 	is	positive-semidefinite	
Mercer’s	theorem	

Exists	(generally	infinite)	set	of	features	ℱ = 𝑓?:𝒳 → ℝ 	
Identify	𝑥	with	𝐱 = 𝑓? 𝑥 ?

	
	 sim 𝑥, 𝑥5 = 𝑓? 𝑥 𝑓? 𝑥5? = 𝐱, 𝐱5 	
	 Important:	often	sim	is	defined	by	some	stimulus	dimensions;	ℱ	will	be	very	different	from	these	
	
Duality	
Feature	and	similarity	models	are	equivalent	at	computational	level	
	 Given	sim	model,	can	get	feature	model	
	 Given	feature	model,	can	get	sim	model	
Different	processes	on	complementarily	different	representations	
Cynical:	nonidentifiable	
Optimistic:	two	lenses	on	same	system,	with	complementary	advantages	
	


